

Portable Emissions Measurement System			
PEMS-GAS for gaseous emissions from diesel- and gasoline engines			
PEMS-PN	for particle numbers		
PEMS-GAS/PN	for combined measurement		

Portable Emissions Measurement System PEMS-GAS for gaseous emissions from diesel- and gasoline engines

The MAHA-AIP developed compact measurement system allows mobile exhaust gas measurement during an actual road trip. The ultra-lightweight device (<20 kg l), fitted at the test vehicle, includes compact fuel gas analyzers, a weather station, a GPS system and the connection to the vehicle network [OBD/CAN interface/INCA-interface (ASAP3)] for continuous test evaluation.

A probe delivers the vehicle exhaust gases from the test box in real-time mode. Depending on the test vehicle, it is possible to use up to two probes.

The component emissions (CO, CO₂, NO_X [or NO + NO₂], [optional THC/NMHC, particle number PN]) together with the associated engine-, vehicle- and environmental-parameters are recorded for further analysis.

2

Advantages

- Weatherproof protective, robust case (IP67) 630 x 400 x 200 mm (WxHxD)
- Compact, lightweight design: <20 kg (incl. battery)
- Clever, quick positioning and fixation at the vehicle trailer hook
- Self-sufficient power supply by rechargeable Lithium-Ion battery
- · Easy change of battery without system switch-off
- Safety approved by DEKRA
 - measuring time up to 5h
- Online reporting with operation indicator for the driver of moving avaraging window method
- Verification and trip evaluation by moving avaraging window method (EMROAD) or power binning method (CLEAR Tool)

Application Examples

- Measurement and analysis of the exhaust emissions directly from the vehicle, while on an actual road trip
- Fuel consumption measurement
- · Analysis for engine development and exhaust after-treatment
- · Component testing

Portable Emissions Measurement System PEMS-GAS for gaseous emissions from diesel- and gasoline engines

Technical Data

Measuring Principles:	NDIR (CO/CO ₂), CLD (NO), PAS (NO ₂)
Operating power:	DC 22 29V
Power demand:	$<50 \ensuremath{W@}\xspace + 20 \ensuremath{^{\circ}C}\xspace$ ambient temperature after warm-up without heated lines
Battery ² :	10,4 Ah rechargeable Lithium-Ion battery.
	Easy change of rechargeable battery without system switch off
Operating Time:	3 5 h, depends on lengths of heated lines and operating temperature
Operating Temperature:	-10°C +40°C
Protection class:	weatherproof, robust case (IP67)
Dimension:	630 x 400 x 200 mm (WxHxD)
Weight:	< 20 kg

Gas Analyzer Method

- CO Non-Dispersive Infrared Detection (NDIR)
- CO2 Non-Dispersive Infrared Detection (NDIR)
- NO Chemiluminescence Detector (CLD)
- NO₂ Photoacustic Spectroscopy (PAS)
- Analyzers fulfill Euro 6c RDE requirements (accuracy, drift, noise, response time, linearity)
- Especially designed for portable emission measurement (robust, compact & lightweight)
- No NO_X converter necessary
- Photacustic analyzer testifyed by DEKRA (low noise, low drift, no interference with other gaseoues components)
- Hardware and software development of analyzers in house
- Time saving automated span calibration with external calibration unit (up to 6 gas inlets)
- Automated linearity checks with external calibration unit (gas divider required)

Measuring Range

- 0... 5 vol %
- 0 ... 20 vol %
- 0 ... 2,500 ppm
- 0 ... 5,000 ppm

- Weather station (ambient temperature, humidity, pressure)
- INCA-Interface (ASAP3)
- CAN-Interface
- OBD-Interface
- AK-Interface
- Video-Recording (incl. Overlays of Measurement Data)
- CSV-Logging
- GPS-Interface (compatible with NMEA-0183 GPS-devices)
- Export of Geodata to Google Maps/Google Earth
- Export of Test data to MDF4-Files (AVL Concerto)
- Online reporting with operation indicator for the driver

Portable Emissions Measurement System PEMS-PN for Particle Numbers

The MAHA AIP developed compact particle number measurement system allows mobile exhaust emission measurement during an actual road trip in real time. The ultra-lightweight device, fitted to the test vehicle, includes a compact Condensation Particle Counter (CPC), a weather station, a GPS system and the connection to the vehicle network [OBD/CAN interface/ INCA-interface (ASAP3)] for continuous test evaluation.

It is possible to use the system in combination with an Exhaust Flowmeter (EFM) also designed by MAHA AIP. The emitted particle number and the associated engine-, vehicle- and environmental-parameters are recorded for analysis.

Advantages

- CPC technology for better comparability to particle number measurement on chassis dynamometers
- Weatherproof protective, robust case (IP67) (W 510 x H 390 x D 220 mm)
- Compact, ultra-lightweight design < 20 kg
- Clever, quick positioning and fixation at the vehicle trailer hook, also in combination with an MAHA-AIP EFM (Exhaust Flow Meter)
- Self-sufficient power supply by rechargeable Lithium Ion Battery
- Easy change of rechargeable battery without system switch off
- Online reporting with operation indicator for the driver

Application Examples

- Measurement and analysis of the exhaust particle number emissions directly from the vehicle, while on an actual road trip
- Analysis for engine development and exhaust after-treatment
- Component testing

Technical Data

Measurement principle: Measurement range:	Condensation Particle Counter Electrical mobility diameter Dp: 23 nm = Dp = 2,5 μ m Particle concentration cP diluted: 1 cm ⁻³ = cP = 1 x v105 cm ⁻³
Linearity CPC:	< 5 % of reading
Response time T10 90:	< 5 \$
Operating power:	DC 22 29V
Power demand:	<70W@ + 20°C ambient
	temperature after
	warm-up without heated
	lines
Battery ² :	10,4 Ah rechargeable Lithium-Ion battery.
	Easy change of
	rechargeable battery
	without system switch off
Operating Lime:	> 3 h, depends on
	lengths of heated lines
	and operating
Protoction close:	- 10 C + 40 C
FIOLECTION Class.	robust asso (IR67)
Dimonsion in mm.	$570 \times 400 \times 250 \text{ mm} (M/x H \times D)$
Weight	< 20 kg
voigit.	< 20 Ng

Portable Emissions Measurement System PEMS-PN for Particle Numbers

Additional Features

- Weather station (ambient temperature, humidity, pressure)
- INCA-Interface (ASAP3)
- CAN-Interface
- OBD-Interface
- AK-Interface
- Video-Recording (incl. Overlays of Measurement Data)
- CSV-Logging
- GPS-Interface (compatible with NMEA-0183 GPS-devices)
- Export of Geodata to Google Maps/Google Earth
- Export of Test data to MDF4-Files (AVL Concerto)
- Online reporting with operation indicator for the driver

Portable Emissions Measurement System PEMS-GAS/PN for gaseous emissions from diesel- and gasoline engines as well as particle numbers

The PN-System can be combined with the MAHA-AIP PEMS-GAS in a weather proof protective and robust case (IP67) as a combined stand-alone unit. It is possible, to combine the system with a MAHA-AIP Exhaust Flow Meter.

PEMS-EFM (Exhaust Flow Meter)

Specification

Measurement principle: Power supply: Communication: Accuracy:

Linearity: Exhaust temperature range: Weight: Differential Flow Measurement Principle MAHA-AIP PEMS LAN, CAN via MAHA-AIP PEMS < 2 % of reading or 0.5 % of full scale, whichever is larger < 1% of full scale 0 °C ... + 700 °C 8 kg (2,5" Tube)

Features

- Compact design, clever, quick installation, e.g. at the test vehicle trailer hook
- For the operation at the left side, right side or dual use (both sides)
- Different flow tube diameters available, for mass flows up to 650 g/s.

11 = 100 4

PEMS Mobile-App

Remote control of the desktop applications via web service for visualization of instantaneous emissions and pollutant concentration during a road test drive.

- Key data presentation of the online evaluation
- Controlling the operating modes, e.g. stand by, pause, measuring mode, status display (e.g. battery status)
- Ready to measure yes/no
- error messages (watchdog function)

ų

Analyzer states NDIR PAS CLD Notes / Viamings / Errors

A

Online Evaluation

	MAHA-AIP PEMSmobile			100 4		
tion (EMROAD)						
omplete						
		PRIMARY				
82.4 -		# U	61.9 💊			
11.8	5	1 R	0 .			
5.9 .		₽ №	0 %			
-Jy	#				끀	
the state	Yolom	Analytik	Things		Defings	
	MAHA-AIP PI	Dvišmobile		Ш	100	
	PEMS-Genit Version 1			*		
	Dummy-Gerat			٠		
	Dummy-OPS-Treber			*		
	tion (EMROAD) omplete comail 82.4 % 11.8 % 5.9 %	минк-AP Pr tion (EMROAD) organia const 82.4 % 11.8 % 5.9 % Минк-AP Pr Ре Сол	MARK-AIP PEMSmodels originits condition 82.4 % 11.8 % 5.9 % Mark-AIP PEMSmodels Mark-AIP PEMSmodels Mark-AIP PEMSmodels Mark-AIP PEMSmodels Mark-AIP PEMSmodels PEMSE Cells Unsign 1 Damm-Origits Damm-Origits	MANA-AP PENSoncials completes completes completes 82.4 % 11.8 % 11.8 % 5.9 % 5.9 % Mark AIP PEnstances EXAMA-AIP PEnstances EXAMA-AIP PEnstances Dammy-Gener	March AP PEMinudan Image: Constraint of the second of the s	

PEAK CAN-to-USB

		MAHA AIP PEMSmobile	VAIP PEMSmobile II				
Operating mod	je						
	+ farmed		Geocennaci				
			. Exectly				
Test control							
	* 1041						
P Control	Apa Sata	# .la	E La constanti	± mag			

		MAHA AIP P	EMSmobile	
Measuring channel values				
co		971.541		(ppm)
C02		0.700000		194
NO		213.363		(opm)
NO2		1000.00		[000]
PARTICLES		105.000		[1/cm ⁴]
A	J_{f*}	#	Ja	
	Namering Channel solates CO2 NO2 PARTICLES	Namerag channel subinis CO CO2 NO NO PARTICLES	Idensity of large system CO 971.41 CO2 0.76000 NO 213.343 NO2 1000.00 PARTICILES 166.000	MANA-AP PEUSencial CO P7.141 CO2 0.70000 NO 213.343 NO2 1908.00 PATTICLES 166.00

Automotive Industry Products Test Systems for a Clean and Safe Environment

Robot

Measurement

... the Road in Your Lab

Test Bench

MAHA-AIP GmbH & Co. KG Automotive Industry Products

